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Abstract

We formulate the metric learning problem as that of minimizing the differen-
tial relative entropy between two multivariate Gaussians under constraints on the
Mahalanobis distance function. Via a surprising equivalence, we show that this
problem can be solved as a low-rank kernel learning problem.Specifically, we
minimize the Burg divergence of a low-rank kernel to an inputkernel, subject to
pairwise distance constraints. Our approach has several advantages over exist-
ing methods. First, we present a natural information-theoretic formulation for the
problem. Second, the algorithm utilizes the methods developed by Kulis et al.
[6], which do not involve any eigenvector computation; in particular, the running
time of our method is faster than most existing techniques. Third, the formulation
offers insights into connections between metric learning and kernel learning.

1 Introduction

We propose a new formulation for learning a Mahalanobis distance under constraints. We model the
problem in an information-theoretic setting by leveragingan equivalence between the multivariate
Gaussian distribution and the Mahalanobis distance. We show that the problem of learning an op-
timal Mahalanobis distance translates to learning the optimal Gaussian with respect to an entropic
objective. Thus, our problem can be thought of as maximizingthe entropy of a multivariate Gaussian
subject to pairwise constraints on the associated Mahalanobis distance.

To solve our problem, we show an interesting connection to a recently proposed low-rank kernel
learning problem [6]. Here, a low-rank kernelK is learned that satisfies a set of given distance
constraints as well as minimizes the Burg matrix divergenceto the given kernelK0. It was shown
that this problem can be optimized using an iterative optimization procedure with costO(cd2) per
iteration, wherec is the number of distance constraints, andd is the dimensionality of the data. In
particular, this method does not require costly eigenvaluecomputations, unlike many other metric
learning algorithms [4, 10, 11].

2 Problem Formulation

Given a set ofn points{x1, ...,xn} in ℜd, we seek a positive definite matrixA which parameterizes
the Mahalanobis distance:

dA(xi,xj) = (xi − xj)
T A(xi − xj).

We assume that some prior knowledge about the distances between these points is known. Specifi-
cally, we consider relationships constraining the similarity or dissimilarity between pairs of points.
Two points are similar if the Mahalanobis distance between them is smaller than a given upper
bound,dA(xi,xj) ≤ u for a relatively small value ofu. Similarly, two points are dissimilar if
dA(xi,xj) ≥ l for sufficiently largel.



In particular, for a classification setting where class labels are known for each instance (as in Glober-
son and Roweis [4]), distances between points in the same class can be constrained to be small, and
distances between two points in different classes can be constrained to be large.

Our problem is to learn a matrixA which parameterizes a Mahalanobis distance that satisifiesa
given set of constraints. Typically, this learned distancefunction is used fork-nearest neighbor
search,k-means clustering, etc. We note that, in the absence of priorknowledge, these algorithms
typically use the standard squared Euclidean distance, or equivalently, the Mahalanobis distance
parameterized by the identity matrixI.

In general, the set of distance functions in our feasible setwill be infinite (we discuss later how to
re-formulate the problem for the case when the feasible set is empty). Therefore, we regularize the
problem by choosing the Mahalanobis matrixA that is as close as possible to the identity matrixI
(which parameterizes the baseline Euclidean distance function). To quantify this more formally, we
propose the following information-theoretic framework.

There exists a simple bijection between the set of Mahalanobis distances and the set of multivari-
ate Gaussians with fixed meanm. Given a Mahalanobis distance parameterized byA, we express
its corresponding multivariate Gaussian asp(x;m, A) = 1

Z
exp (−dA(x,m)), whereZ is a nor-

malizing constant. Using this bijection, we define the distance between two Mahalanobis distance
functions parametrized byA1 andA2 as the (differential) relative entropy between their correspond-
ing multivariate Gaussians:

KL(p(x;m, A1)‖p(x;m, A2)) =

∫

p(x;m, A1) log
p(x;m, A1)

p(x;m, A2)
dx. (1)

Given a set of pairs of similar pointsS and pairs of dissimilar pointsD, our distance metric learning
problem is

min KL(p(x;m, A)‖p(x;m, I))

subject to dA(xi,xj) ≤ u (i, j) ∈ S,

dA(xi,xj) ≥ l (i, j) ∈ D.

(2)

Note thatm is an arbitrary fixed vector.

3 Algorithm

In this section, we demonstrate how to solve the information-theoretic metric learning problem (2)
by proving its equivalence to a low-rank kernel learning problem. Using this equivalence, we appeal
to the algorithm developed in [6] to solve our problem.

3.1 Equivalence to Low-Rank Kernel Learning

Let X = [x1 x2 ... xn], and the Gram matrix over the input points beK0 = XT X. Consider the
following kernel learning problem, to be solved forK:

min DBurg(K,K0)

subject to Kii + Kjj − 2Kij ≤ u (i, j) ∈ S,

Kii + Kjj − 2Kij ≥ l (i, j) ∈ D,

K º 0.

(3)

The Burg matrix divergence is a Bregman matrix divergence generated by the convex function
φ(X) = − log detX over the cone of semi-definite matrices, and it is defined as

DBurg(K,K0) = Tr(KK−1

0
) − log det(KK−1

0
) − n. (4)

Formulation (3) attempts to find the nearest kernel matrix inBurg-divergence to the input Gram
matrix, subject to linear inequality constraints. It can beshown that the Burg divergence between
two matrices is finite if and only if their range spaces are thesame [6]. This fact allows us to



conclude that the range spaces ofK andK0 are the same if the problem has a feasible solution.
Furthermore, the learned matrixK can be written as a rank-d kernelK = XT WT WX, for some
(d × d) full-rank matrixW .

We now state a surprising equivalence between problems (2) and (3). By solving (3) forK =
XT WT WX, the optimalA for (2) can be easily constructed viaA = WT W . We will not provide
a detailed proof of this result; however, we present the two key lemmas.

Lemma 1: DBurg(K,K0) = 2KL(p(x;m, A)‖p(x;m, I)) + c, where c is a constant.

Lemma 1 establishes that the objectives for information-theoretic metric learning and low-rank ker-
nel learning are essentially the same. It was recently shown[3] that the differential relative entropy
between two multivariate Gaussians can be expressed as the convex combination of a Mahalanobis
distance between mean vectors and the Burg matrix divergence between the covariance matrices.
Here, the two mean vectors are the same, so their Mahalanobisdistance is zero. Thus, the relative
entropy, KL(p(x;m, A)‖p(x;m, I)), is proportional to the Burg matrix divergence fromA to I.

Therefore, the proof of the Lemma 1 reduces to showing thatDBurg(K,K0) andDBurg(A, I) differ
by only a constant. Interestingly, thedimensions of the matrices in these two divergences are
different:K andK0 are(n × n), while A andI are(d × d).

Lemma 2: Given K = XT AX , A is feasible for (2) if and only if K is feasible for (3).

This lemma confirms that if we have a feasible kernel matrixK satisfying the constraints of (3), the
corresponding Mahalanobis distance parameterized byA satisfies the constraints of (2). Note that
by associating the kernel matrix with the Mahalanobis distance, we can generalize to unseen data
points, thus circumventing a problem often associated withkernel learning.

3.2 Metric Learning Algorithm

Given the connection stated above, we can use the methods in [6] to solve (3). Since the output of
the low-rank kernel learning algorithm isW , and we preferA in its factored formWT W for most
applications, no additional work is required beyond running the low-rank kernel learning algorithm.

Our metric learning algorithm is given as Algorithm 1; each constraint projection costsO(d2) per
iteration and requires no eigendecomposition. Thus, an iteration of the algorithm (i.e., looping
through allc constraints) requiresO(cd2) time. Note that a naive implementation would costO(cd3)
time per iteration (because of the multiplicationLT W ), but the Cholesky factorization can be com-
bined with the matrix multiplication into a singleO(d2) routine, leading to the more efficientO(cd2)
per iteration running time.

The low-rank kernel learning algorithm which forms the basis for Algorithm 1 repeatedly computes
Bregman projections, which project the current solution onto a single constraint. By employing the
Sherman-Morrison-Woodbury inverse formula appropriately, this projection—which generally has
no closed-form solution—can be computed analytically. Furthermore, it can be computed efficiently
on a low-rank factorization of the kernel matrix.

4 Discussion

In this work we formulate the Mahalanobis metric learning problem in an information-theoretic
setting and provide an explicit connection to low-rank kernel learning. We now briefly discuss
extensions to the basic framework, and we contrast our approach with other work on metric learning.

We consider finding the Mahalanobis distance closest to the baseline Euclidean distance as measured
by differential relative entropy. In some applications, itmay be more appropriate to consider finding
a Mahalanobis distance closest to some other baseline; for example, one could use the Mahalanobis
distance parametrized by the sample covariance matrixS as a baseline, in which case the resulting
Burg divergence problem becomes a minimization ofDBurg(A,S). We note that extensions of this
sort can be solved by variants of our proposed framework.



ALGORITHM 1: Algorithm for information-theoretic metric learning

ITM ETRICLEARN(X,S,D, u, l)
Input: X: input d × n matrix, S: set of similar pairs,D: set of dissimilar pairs,u, l:
distance thresholds
Output: W : output factor matrix, whereWT W = A
1. SetW = Id andλij = 0 ∀ i, j
2. Repeat until convergence:

• Pick a constraint(i, j) ∈ S or (i, j) ∈ D

• Let vT be rowi of X minus rowj of X

• Set the following variables:

1. w = Wv

2. if (similarity constraint)

γ = min
(

λij ,
1

‖w‖2

2

− 1

u

)

β = γ/(1 − γ‖w‖2

2
)

else if (dissimilarity constraint)

γ = min
(

λij ,
1

l
− 1

‖w‖2

2

)

β = −γ/(1 + γ‖w‖2

2
)

3. λij = λij − γ

• Compute the Cholesky factorizationLLT = I + βww
T

• SetW ← LT W

3. ReturnW

We consider simple distance constraints for similar and dissimilar points, though it is straightforward
to incorporate other constraints. For example, Schutz and Joachims [8] consider a formulation where
the distance metric is learned subject to relative nearnessconstraints on the input points (as in,
the distance betweeni and j is closer than the distance betweeni andk). Our approach can be
adapted to handle this setting. In fact, it is possible to incorporate arbitrary linear constraints into
our framework.

Finally, our basic formulation assumes that there exists a feasible point that satisfies all of the dis-
tance constraints, but in practice, this may fail to hold. A simple extension to our framework can
incorporate slack variables on the distance constraints tohandle such infeasible cases.

4.1 Related Work

Xing et al. [11] use a semidefinite programming formulation for learning a Mahalanobis distance
metric. Their algorithm aims to minimize the sum of squared distances between input points that are
“similar”, while at the same time aiming to separate the “dissimilar” points by a specified minimum
amount. Our formulation differs from theirs in two respects. First, we minimize a Burg-divergence,
and second, instead of considering the sum of distortions over dissimilar points, we consider pairs
of constrained points.

Weinberger et al. [10] formulate the metric learning problem in a large margin setting, with a focus
on kNN classification. They formulate the problem as a semidefinite programming problem and
consequently solve it using a combination of sub-gradient descent and alternating projections. Our
formulation does not solely have kNN as a focal point, and differs significantly in the algorithmic
machinery used.

The paper of Globerson and Roweis [4] proceeds to learn a Mahalanobis metric by essentially
shrinking the distance between similar points to zero, and expanding the distance between dissimilar
points to infinity. They formulate a convex optimization problem which they propose to solve by
a projected-gradient method. Our approach allows more refined interpoint constraints than just a
zero/one approach.



Chopra et al. [1] presented a discriminative method based onpairs of convolutional neural networks.
Their method aims to learn a distance metric, wherein the interpoint constraints are approximately
enforced by penalizing large distances between similar points or small distances between dissim-
ilar points. Our method is solved more efficiently, and the constraints are enforced incrementally.
Furthermore, as discussed above, by including slacks on ourconstraints, we can accommodate “soft-
margin” constraints.

Shalev-Shwartz et al. [9] consider an online metric learning setting, where the interpoint constraints
are similar to ours. They also provide a margin interpretation, similar to that of [10]. Their formula-
tion considers distances between all pairs of similar and dissimilar points, whereas we consider only
a fixed set of input pairwise constrained points.

Other notable work includes the articles [2, 5, 7, 8]. Crammer et al. [2] applies boosting to kernel
learning, for a connection of our method kernel learning seeSection 3. Lanckriet et al. [7] study
the problem of kernel learning via semidefinite programming. Goldberger et al. [5] proposed neigh-
borhood component analysis to explicitly aid kNN; however,the formulation is non-convex and can
lead to local optima.
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